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The Brassica oleracea genome reveals the
asymmetrical evolution of polyploid genomes
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Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the

molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are

unclear. Brassica is an ideal model to increase knowledge of polyploid evolution. Here we describe a draft genome

sequence of Brassica oleracea, comparing it with that of its sister species B. rapa to reveal numerous chromosome

rearrangements and asymmetrical gene loss in duplicated genomic blocks, asymmetrical amplification of transpo-

sable elements, differential gene co-retention for specific pathways and variation in gene expression, including

alternative splicing, among a large number of paralogous and orthologous genes. Genes related to the production of

anticancer phytochemicals and morphological variations illustrate consequences of genome duplication and gene

divergence, imparting biochemical and morphological variation to B. oleracea. This study provides insights into Brassica

genome evolution and will underpin research into the many important crops in this genus.
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B rassica oleracea comprises many important vegetable crops
including cauliflower, broccoli, cabbages, Brussels sprouts,
kohlrabi and kales. The species demonstrates extreme

morphological diversity and crop forms, with various members
grown for their leaves, flowers and stems. About 76 million tons
of Brassica vegetables were produced in 2010, with a value of
14.85 billion dollars (http://faostat.fao.org/). Most B. oleracea
crops are high in protein1 and carotenoids2, and contain diverse
glucosinolates (GSLs) that function as unique phytochemicals for
plant defence against fungal and bacterial pathogens3 and on
consumption have been shown to have potent anticancer
properties4–6.

B. oleracea is a member of the family Brassicaceae (B338
genera and 3,709 species)7 and one of three diploid Brassica
species in the classical triangle of U8 that also includes diploids
B. rapa (AA) and B. nigra (BB) and allotetraploids B. juncea
(AABB), B. napus (AACC) and B. carinata (BBCC). These
allotetraploid species are important oilseed crops, accounting
for 12% of world edible oil production (http://faostat.fao.org/). As
the origin and relationship between these species is clear, the
timing and nature of the evolutionary events associated with
Brassica divergence and speciation can be revealed by inter-
specific genome comparison. Each of the Brassica genomes
retains evidence of recursive whole-genome duplication (WGD)
events9,10 (Supplementary Fig. 1) and have undergone a
Brassiceae-lineage-specific whole-genome triplication (WGT)11,12

since their divergence from the Arabidopsis lineage. These events
were followed by diploidization that involved substantial genome
reshuffling and gene losses11–15. Because of this, Brassica species
are a model for the study of polyploid genome evolution
(Supplementary Fig. 2), mechanisms of duplicated gene loss,

neo- and sub-functionalization, and associated impact on
morphological diversity and species differentiation.

We report a draft genome sequence of B. oleracea and its
comprehensive genomic comparison with the genome of sister
species B. rapa, which diverged from a common ancestor B4
MYA. These data provide insights into the dynamics of Brassica
genome evolution and divergence, and serve as important
resources for Brassica vegetable and oilseed crop breeding.
Furthermore, this genome will support studies of the large range
of morphological variation found within B. oleracea, which
includes sexually compatible crops such as cabbages, cauliflower
and broccoli that are important for their economic, nutritional
and potent anticancer value.

Results
B. oleracea genome assembly and annotation. Complementing
the sequencing of the smaller B. rapa genome11, a draft genome
assembly of B. oleracea var. capitata line 02–12 was produced by
interleaving Illumina, Roche 454 and Sanger sequence data. This
assembly represents 85% of the estimated 630 Mb genome, and
includes 498% of the gene space (Supplementary Methods,
Supplementary Tables 1–3, 7 and 8 and Supplementary Fig. 3).
The assembly was anchored to a new genetic map16 to produce
nine pseudo-chromosomes that account for 72% of the assembly,
and validated by comparison with a B. oleracea physical map17,
a high-density B. napus genetic map18 and complete BAC
sequences (Supplementary Figs 4–9 and Supplementary Tables 4
and 5). For comparative analyses, identical genome annotation
pipelines were used for annotation of protein-coding genes and
transposable elements (TEs) for B. oleracea and B. rapa.

Table 1 | Summary of genome assembly and annotation of B. oleracea.

B. oleracea genome assembly

N90 N50 Longest Total size

Contig size (bp) 3,527 26,828 199,461 502,114,421
Contig number 22,669 5,425

Total number(42 kb): 27,351
Scaffold size (bp) 258,906 1,457,055 8,788,225 539,907,250
Scaffold number 388 224 Anchored to chr. 72%

Total number(42 kb): 1,809

B. oleracea genome annotation

B. oleracea

In the assembly In WG short reads*

Size (bp) Copy numberw % assemblyz

Retrotransposon 105,755,173 108,948 22.13 23.60
DNA transposon 79,675,583 170,500 16.67 12.71
Total 185,430,756 279,448 38.80 36.31

Gene models Gene space coveredy Annotated Supported by ESTs

Protein-coding genes 45,758 98% 91.6% 99.0%

Average transcript length Average coding length No. of average exons No. of alternative splicing variants

1,762 bp 1,037 bp 4.6 30,932

Non-coding RNA miRNA tRNA rRNA snRNA

Copy number 336 1,425 553 1,442
Average length (bp) 119 75 166 110

*WG, whole genome, 20� coverage reads were randomly sampled from all the genomic short reads libraries.
wThe copy number of TEs was from the RepeatMasker results.
zThe ungapped regions were used to detect the percentage of TEs in the assembly. TE sizes are from the ungapped regions of B. oleracea 477,847,347 bp.
yEstimated by public Brassica ESTs and RNA-seq data.
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A total of 45,758 protein-coding genes were predicted, with a
mean transcript length of 1,761 bp, a mean coding length
of 1,037 bp, and a mean of 4.55 exons per gene (Table 1,
Supplementary Methods, Supplementary Table 6 and
Supplementary Fig. 10), similar to A. thaliana19 and B. rapa11.
Publicly available ESTs, together with RNA sequencing (RNA-
seq) data generated in this study, support 94% of predicted gene
models (Supplementary Tables 7 and 8), and 91.6% of predicted
genes have a match in at least one public protein database
(Supplementary Tables 9 and 10, and Supplementary Fig. 11). Of
the 45,758 predicted genes, 13,032 produce alternative splicing
(AS) variants with intron retention and exon skipping
(Supplementary Table 11). Genome annotation also predicted
3,756 non-coding RNAs (miRNA, tRNA, rRNA and snRNA)
(Supplementary Table 12).

A combination of structure-based analyses and homology-
based comparisons resulted in the identification of 13,382 TEs
with clearly identified terminal boundaries, including 5,107
retrotransposons and 8,275 DNA transposons (Supplementary
Methods, Supplementary Fig. 12 and Supplementary Table 13).
These elements together with numerous truncated elements or TE
remnants make up 38.80% of the assembled portion of the
B. oleracea genome, whereas TEs account for only 21.47% of the
B. rapa genome assembly. Copia (11.64%) and gypsy (7.84%)
retroelements are the major constituents of the repetitive fraction,
and are unevenly distributed across each chromosome, with
retrotransposons predominantly found in pericentromeric or
heterochromatic regions (Supplementary Fig. 13) in B. oleracea.

Tentative physical positions of some of the centromeres were
determined based on homologue and phylogenetic analysis of the
centromere-specific 76 bp tandem repeats CentBo-1 and CentBo-
2 and copia-type retrotransposon (CentCRBo) (Supplementary
Table 14 and Supplementary Figs 14–17). The distribution of 45S
and 5S rDNA sequences were also visualized by fluorescent in situ
hybridization (Supplementary Figs 18 and 19), leading to a
predicted karyotype ideogram for B. oleracea (Supplementary
Fig. 20). An extra-centromeric locus with colocalized centromeric
satellite repeat CentBo-1 and the centromeric retrotransposon
CRBo-1 was observed on the long arm of chromosome 6
(Supplementary Figs 18–20). A comprehensive database for the
genome information is accessible at http://www.ocri-genomic-
s.org/bolbase/index.html.

Conserved syntenic blocks and genome rearrangement after
WGT. The relatively complete triplicated regions in B. oleracea
and B. rapa were constructed and they relate to the 24 ancestral
crucifer blocks (A–X) in A. thaliana20. Further the triplicated
blocks resulting from WGT in the two Brassica species were
partitioned into three subgenomes: LF (Least-fractionated), MF1
(Medium-fractionated) and MF2 (Most-fractionated)11 (Fig. 1a,
Supplementary Methods, Supplementary Tables 15 and 16, and
Supplementary Figs 21–26). These syntenic blocks occupy the
majority of the genome assemblies of A. thaliana (19,628 genes,
72.24% of 27,169 genes), B. oleracea (26,485 genes, 57.88%) and
B. rapa (26,698 genes, 64.84%), and provide a foundation for
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Figure 1 | Genomic structure and gene retention rates in syntenic regions of B. oleracea and B. rapa. (a) Segmental colinearity of the genomes

of B. oleracea, B. rapa and A. thaliana. Syntenic blocks are defined and labelled from A to X (coloured) previously reported in A. thaliana20. (b) Time estimate

of WGD and subsequent two Brassica species divergence. (c) Pattern of retention/loss of orthologous genes on each set of three subgenomic (LF, MF1

and MF2) blocks of B. oleracea and B. rapa corresponding to A. thaliana A to X blocks. The x axis denotes the physical position of each A. thaliana

gene locus. The y axis denotes the proportion of orthologous genes retained in the B. oleracea and B. rapa subgenomic blocks around each A. thaliana gene,

where 500 genes flanking each side of a certain gene locus were analysed, giving a total window size of 1,001 genes.
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comparative analyses of chromosomal rearrangement, gene loss
and divergence of retained paralogues after WGT. Massive gene
loss occurred in an asymmetrical and reciprocal fashion in the
three subgenomes of each species and was largely completed
before the B. oleracea–B. rapa divergence (Fig. 1c, Supplementary
Tables 17–19 and Supplementary Figs 25–27). The timing of this
evolutionary process was supported by the estimated timing of
WGT B15.9 million years ago (MYA), and species divergence
B4.6 MYA, based on synonymous substitution (Ks) rates of
genes located in the blocks (Fig. 1b and Supplementary Table 20).
Gene loss occurred mainly through small deletions that may
be caused by illegitimate recombination21,22 (Supplementary
Fig. 27), consistent with observations in other plant genomes.

Abundant genome rearrangement following WGT and sub-
sequent Brassica species divergence resulted in complex mosaics
of triplicated ancestral genomic blocks in the A and C genomes
(Fig. 1a and Supplementary Fig. 28). At least 19 major, and
numerous fine-scale, chromosome rearrangements occurred,
which differentiate the two Brassica species (Supplementary
Fig. 29). This is in agreement with previous comparative studies
based on chromosome painting12,23 and genetic mapping24,25.
The extensive chromosome reshuffling in Brassica is in contrast
to that observed in other taxa, such as the highly syntenic
tomato–potato and pear–apple genomes, each with longer
divergence times and less genome rearrangement26,27. This
difference may be a consequence of mesopolyploidy in Brassica.

Greater TEs accumulation in B. oleracea than B. rapa. Both
retro- (22.13%) and DNA (16.67%) TEs appear to be greater
amplified in B. oleracea relative to B. rapa (9.43 and 12.04%)
(Fig. 2a and Supplementary Table 13). We constructed 1,362
gap-free contig-contig syntenic regions by clustering orthologous
B. rapa—B. oleracea genes using MCscan (Supplementary Figs 29
and 30). The B. oleracea TE length (34.03% of the 259.6M) is 3.4
times greater than that of the syntenic B. rapa regions (16.73% of
the 155.0M) (Fig. 2c, Supplementary Tables 21 and 22, and
Supplementary Fig. 31). Phylogenetic analysis revealed that
B. oleracea has both more LTR retrotransposon (LTR-RT) families,
and more members in most families than B. rapa (Fig. 2d and
Supplementary Figs 12, 32 and 33). Furthermore, two new lineages
of LTR-RTs, Brassica Copia Retrotransposon and Brassica Gypsy
Retrotransposon, were defined in both Brassica species
(Supplementary Fig. 33). Analysis of LTR insertion time revealed
that B98% of B. oleracea intact LTR-RTs amplified continuously
over the B4 million years (MY) since the B. oleracea–B. rapa split,
whereas B68% of B. rapa intact LTR-RTs amplified rapidly within
the last 1 MY, predominantly in the recent 0.2 MY (Fig. 2b and
Supplementary Fig. 34). Hence, LTR-RTs expanded more in the
intergenic space of euchromatic regions in B. oleracea than B. rapa.
This agrees with previous observations based on comparison
of BAC sequences between the A and C genomes28. As a
consequence of continuous TE amplification over the last 4 MY,
the genome size of B. oleracea is B30% larger than that of B. rapa
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although the two genomes share the same ploidy and are largely
collinear.

Species-specific genes and tandemly duplicated genes. While
the genomes of B. oleracea and B. rapa are highly similar in terms
of total gene clusters/sequences and the gene number in each
cluster, there are also a large number of species-specific genes in
the two species. A total of 66.5% (34,237 genes) of B. oleracea
genes and 74.9% (34,324) of B. rapa genes were clustered into
OrthoMCL groups (Supplementary Table 23 and Supplementary
Fig. 35). We identified 9,832 B. oleracea-specific and 5,735
B. rapa-specific genes, of which 77% were supported by gene
expression and/or a clear Arabidopsis homologue (Supplementary
Table 24). Of them, 490% of these specific genes were validated
for their absence in the counterpart genomes by reciprocal
mapping of raw clean reads (Supplementary Tables 25 and 26).
Most Brassica-specific genes are randomly distributed along the
chromosomes (Supplementary Figs 36 and 37). More than 80% of
the species-specific genes were surrounded by non-specific genes
(Supplementary Fig. 38), suggesting that deletion of individual
genes may be the major mechanism underlying gene loss and the
difference in gene numbers between B. oleracea and B. rapa.

Tandem duplication produces clusters of duplicated genes and
contributes to the expansion of gene families29. We identified
1,825, 2,111 and 1,554 gene clusters containing 4,365, 5,181 and
4,170 tandemly duplicated genes in B. oleracea, B. rapa and

A. thaliana, respectively (Fig. 3a, Supplementary Tables 27 and 28
and Supplementary Fig. 39). The wide range of sequence
divergence of tandem gene pairs in each species suggests that
tandem
gene duplication occurred continuously throughout the
evolutionary history of these species, rather than in discrete
bursts (Supplementary Figs 40 and 41). Their continuous and
asymmetrical occurrence after species divergence resulted in 522,
697 and 815 species-specific tandem clusters in the three
genomes. The frequency of tandem duplication is independent
of the total gene content, suggesting that genome triplication has
not inhibited its occurrence. Tandemly duplicated genes are
preferentially enriched for gene ontology (GO) categories related
to defence response and pathways related to secondary
metabolism such as indole alkaloid biosynthesis and tropane,
piperidine and pyridine alkaloid biosynthesis (Fig. 3b,
Supplementary Tables 29–32 and Supplementary Fig. 42). Over
44.0 and 51.9% of the NBS-encoding resistance genes are
tandemly duplicated in B. oleracea and B. rapa, respectively
(Supplementary Table 33).

Biased loss and retention of genes after WGT/WGD. Following
polyploidization, reversion of gene numbers towards diploid
levels through gene loss has been widely observed in plants30.
However, in Brassica this only appears to be true for collinear
genes in the conserved syntenic regions, with a loss of B60%
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of the predicted post-triplication gene set, nearly restoring the
pre-triplication gene number. This is reflected in an overall
retention rate of 1.2-fold of A. thaliana orthologous genes in
corresponding syntenic regions (Fig. 1c and Supplementary
Table 18). In contrast, in terms of genes that have no collinear
gene in A. thaliana and either Brassica species (hereafter called
non-collinear genes), gene retention rates is 2.5-fold the
A. thaliana gene number in B. oleracea and 1.9-fold in B. rapa,
both significantly higher than the expected rates (P value o2.2e–16;
Supplementary Table 34). For these retained genes, the numbers of
the genes that are common in the two Brassica species are 11,746 in
B. oleracea and 10,411 in B. rapa. Most of these genes are supported
by expression and/or the presence of an Arabidopsis homologue
(Supplementary Table 35). More than 61% of these genes have
homologues present as collinear genes and 16% also are homologous
to other non-collinear genes, indicating gene movement from
triplicated syntenic regions and being similar to observations in A.
thaliana, where half of the genes are nonsyntenic within rosids31.
This suggests that the breakdown of the triplicated syntenic
relationship has not only prevented gene loss and a move towards
pre-triplication gene numbers but has also maintained a higher gene
density, and thus maintained WGT-derived genes for species
evolution.

The presence of a large number of the retained paralogous
genes in the syntenic regions led us to examine whether genes in
some functional categories have preferentially been over-retained,
as observed in other plants29. The results indicate that
WGT-produced paralogous genes are over-retained in GO
categories associated with regulation of metabolic and bio-
synthetic processes, RNA metabolism and transcription factors
(Supplementary Table 36 and Supplementary Figs 43–45), and
the two Brassica species exhibit similar patterns of gene category
retention. From a study of KEGG pathways, we also found that
WGT-produced Brassica paralogous genes contribute 40–60% of
total genes for 90% of KEGG pathways (Fig. 3c and
Supplementary Fig. 43), and are functionally enriched in
primary or core metabolic processes such as oxidative
phosphorylation, carbon fixation, photosynthesis, circadian
rhythm32 and lipid metabolism (Supplementary Tables 36 and
37 and Supplementary Figs 43–45). Notably, the pathways
associated with energy metabolism have been enhanced in both
Brassica species. For instance, in the oxidative phosphorylation
pathway, there are 161 genes in A. thaliana, but 241 in B. oleracea
and 208 in B. rapa. The majority (143/241 and 142/208) of these
Brassica genes are multiple paralogues residing in the triplicated
syntenic regions, and more than half of these paralogues
have been retained as three copies, significantly higher than
observed for other genes in the triplication regions (Fig. 3d and
Supplementary Fig. 43).

Phylogenetic analyses show that WGT led to an expansion of
genes involved in auxin functioning (AUX, IAA, GH3, PIN,
SAUR, TAA, TIR, TPL and YUCCA), morphology specification
(TCP), and flowering time control (FLC, CO, VRN1, LFY,
AP1 and GI) (Supplementary Table 38 and Supplementary
Figs 46–61), and that most Arabidopsis genes in these families
have two or three orthologs in Brassica species. These WGT-
produced duplicated genes may provide important sources of
evolutionary innovation33 and contribute to the extreme
morphological diversity in Brassica species.

Divergence of duplicated genes in the Brassica genomes. The
largest genetic foundation for plant genome evolution and new
species formation is the differentiation of retained paralogous and
orthologous genes. Around 38% (4,302/11,493) of all paralogous
gene pairs in B. oleracea and B36% (4,089/11,448) in B. rapa

have different predicted exon numbers (Supplementary Data 1,
Supplementary Tables 39 and 40 and Supplementary Fig. 62).
There are 6,571 orthologous gene pairs with different exon
numbers, accounting for 27.6% of total gene pairs (23,823). Some
paralogous or orthologous pairs have high Ks values and low
sequence similarity (Supplementary Fig. 63), indicating sequence
differentiation. Of these paralogous genes, some offer appreciable
opportunity for non-reciprocal DNA exchanges (gene conver-
sion). About 8% of the 4,296 homologous quartets in B. rapa and
B. oleracea have been affected by gene conversion (Fig. 4a,
Supplementary Table 41 and Supplementary Fig. 64) and about
one-sixth (53) of converted genes were inferred to have experi-
enced independent conversion events in both Brassica species, a
parallelism sometimes observed in other plants11,34. Around
40–44% of conversion events involved paralogues in the less-
fractionated subgenomes LF in both species, substantially higher
than the other two subgenomes (Supplementary Table 41). This
finding suggests that gene conversion is related to homologous
gene density, which determines the likelihood of illegitimate
recombination.

Analysis of RNA-seq data generated from callus, root, leaf,
stem, flower and silique of B. oleracea and B. rapa suggests that
440% of WGT paralogous gene pairs are differentially expressed
in these species (Fig. 4b and Supplementary Fig. 65), suggesting
potential subfunctionalization of these genes. In both species, a
general trend of expression differentiation was alpha-WGD
paralogous genes (B46%) 4 WGT paralogous genes (B42%)
4 tandemly duplicated genes (B35%) (Fig. 4b, Supplementary
Fig. 66 and Supplementary Tables 42 and 43). Different tissues
harbour approximately the same number of differentially
expressed duplicates, but this number was slightly higher in
flower tissue. The expression level of genes in the LF subgenome
was significantly higher than corresponding syntenic genes in the
more fractionated subgenomes (MF1 and MF2) while no
expression dominance relationship was observed between the
subgenomes MF1 and MF2 (Fig. 4c, Supplementary Table 44 and
Supplementary Fig. 67). Duplicated transcription factor gene
pairs showed less differentiated expression (B38%) than the
expected ratio at the genome-wide level (Fig. 4d and
Supplementary Table 45), while paralogues with GO categories
related to membrane, catalytic activity and defence response
exhibited a higher ratio of differentiated expression (Fig. 4e and
Supplementary Table 46). Of B. oleracea–B. rapa orthologous
gene pairs (23,823 in total), B42% were differentially expressed
across all tissues (Supplementary Tables 42 and 43).

Furthermore, many paralogues generate different transcripts,
resulting in expression differentiation. Analysis of AS variants of
paralogous gene pairs that have identical numbers of exons
demonstrated that these variants (either different variants or
differential expression of the same variants) cause 420% and
444% of such paralogous genes to be differentially expressed in
B. oleracea and B. rapa, respectively (Fig. 4f and Supplementary
Table 47). For orthologous gene pairs of B. oleracea and B. rapa,
35.5% (8,467) of gene pairs showed differential expression due to
AS variation. When only counting intron retention and exon
skipping, 9.3% (2,215) of gene pairs differ. Divergence in AS
variants of gene pairs presents an important layer of gene
regulation, as reported35–38, and thus provides a genetic basis for
species evolution and new species formation.

Unique GSLs metabolism pathways. GSLs and hydrolysis pro-
ducts have been of long-standing interest due to their role in plant
defence and anticancer properties. Compared with B. rapa and
B. napus, B. oleracea has the greatest GSL profile diversity, with
wide qualitative and quantitative variation39,40. We identified 101
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and 105 GSL biosynthesis genes in B. rapa and B. oleracea,
respectively, and 22 GSL catabolism genes in each species (Fig. 5a,
Supplementary Table 48 and Supplementary Data 2). In the GSL
biosynthesis and catabolism pathways, tandem genes (41.4%,
40.7% and 33.9% in A. thaliana, B. oleracea and B. rapa,
respectively) were present in a much higher proportion than the

genome-wide average (Supplementary Table 32). The observed
variation of GSL profiles is mainly attributed to the duplication
of two genes, methylthioalkylmalate (MAM) synthase and
2-oxoglutarate-dependent dioxygenase (AOP).

In Arabidopsis, the MAM family contains three tandemly
duplicated and functionally diverse members (MAM1, MAM2
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and MAM3), and functional analysis demonstrated that MAM2
(absent in ecotype Columbia) and MAM1 catalyses the
condensation reaction of the first and the first two elongation
cycles for the synthesis of dominant 3 and 4 carbon (C) side-
chain aliphatic GSLs, respectively40,41, while MAM3 is assumed
to contribute to the production of all GSL chain lengths42. In
B. rapa and B. oleracea, MAM1/MAM2 genes experienced
independent tandem duplication to produce 6 and 5 orthologs
respectively (Fig. 5b,c). The main GSLs in B. oleracea are 4C and
3C GSLs (progoitrin, gluconapin, glucoraphanin and sinigrin)43,
while those in B. rapa are 4C and 5C GSLs (gluconapin and
glucobrassicanapin)39 (Fig. 5a). Based on the results of expression
and phylogenetic analyses, we found a pair of genes Bol017070
and Bra013007, which are the only orthologous genes showing
high expression in B. oleracea but silenced in B. rapa (Fig. 5a).

This expression difference most likely leads to greater
accumulation of the 3C GSL anticancer precursor sinigrin in
B. oleracea. Meanwhile, the expression level of MAM3 in B. rapa
is much higher than in B. oleracea, explaining the accumulation
of 5C GSL glucobrassicanapin in B. rapa. Other genes affecting
specific anticancer GLS products are AOPs. Previously, research
has reported four gene loci involved in the side-chain
modifications of aliphatic GSLs in Arabidopsis. Two tandemly
duplicated genes AOP2 and AOP3 catalyse the formation of
alkenyl and hydroxyalkyl GSLs, respectively. When both AOPs
are non-functional, the plant accumulates the precursor
methylsulfinyl alkyl GSL. We identified three AOP2 genes in
B. oleracea (Fig. 5d), but two are non-functional due to the
presence of premature stop codons. In contrast, all three AOP2
copies are functional in B. rapa44. No AOP3 homologue has been
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identified in Brassica. This analysis supports GSL content surveys
and explains why glucoraphanin is abundant in B. oleracea, but
not in B. rapa.

Discussion
The Brassica genomes experienced WGT11,12,25 followed by
massive gene loss and frequent reshuffling of triplicated genomic
blocks. Analysis of retained or lost genes following triplication
identified over-retention of genes for metabolic pathways such as
oxidative phosphorylation, carbon fixation, photosynthesis and
circadian rhythm32, which may contribute to polyploid vigour45.
Fewer lost genes were observed in the less-fractionated sub-
genome, possibly due to expression dominance as reported in
maize46.

Gene expression analysis revealed extensive divergence and AS
variants between duplicate genes. This subfunctionalization or
neofunctionalization of duplicated genes provides genetic novelty
and a basis for species evolution and new species formation. For
example, TF genes that are considered to be conserved still have
more than 38% of paralogous pairs showing differential
expression across tissues although this percentage is lower than
the average from all duplicated genes. Gene expression variation
may contribute to an increased complexity of regulatory networks
after polyploidization.

The multi-layered asymmetrical evolution of the Brassica
genomes revealed in this study suggests mechanisms of polyploid
genome evolution underlying speciation. Asymmetrical gene
loss between the Brassica subgenomes, the asymmetrical
amplification of TEs and tandem duplications, preferential
enrichment of genes for certain pathways or functional categories,
and divergence in DNA sequence and expression, including
alternative splicing among a large number of paralogous
and orthologous genes, together shape a route for genome
evolution after polyploidization. A molecular model of polyploid
genome evolution through these asymmetrical mechanisms is
summarized in Supplementary Fig. 2. The additional information
of accessible large datasets and resource was provided in
Supplementary Table 49.

In summary, the B. oleracea genomic sequence, its features in
comparison with its relatives, and the genome evolution
mechanisms revealed, provide a fundamental resource for the
genetic improvement of important traits, including components
of GSLs for anticancer pharmaceuticals. The genome sequence
has also laid a foundation for investigation of the tremendous
range of morphological variation in B. oleracea as well as
supporting genome analysis of the important allotetraploid crop
B. napus (canola or rapeseed).

Methods
Sample preparation and genome sequencing. A B. oleracea sp. capitata
homozygous line 02–12 with elite agronomic characters and widely used as a
parent in hybrid breeding was used for the reference genome sequencing
(Supplementary Methods). The seedlings of plants were collected and genomic
DNA was extracted from leaves with a standard CTAB extraction method. Illumina
Genome Analyser whole-genome shotgun sequencing combined with GS FLX
Titanium sequencing technology was used to achieve a B. oleracea draft genome.
We constructed a total of 35 paired-end sequencing libraries with insertion sizes of
180 base pairs (bp), 200 bp, 350 bp, 500 bp, 650 bp, 800 bp, 2 kb, 5 kb, 10 kb and
20 kb following a standard protocol provided by Illumina (Supplementary
Methods). Sequencing was performed using Illumina Genome Analyser II
according to the manufacturer’s standard protocol.

Genome assembly and validation. We took a series of checking and filtering
measures on reads following the Illumina-Pipeline, and low-quality reads, adaptor
sequences and duplicates were removed (Supplementary Methods). The reads after
the above filtering and correction steps were used to perform assembly including
contig construction, scaffold construction and gap filling using SOAPdenovo1.04
(http://soap.genomics.org.cn/) (Supplementary Methods). Finally, we used 20-kb-
span paired-end data generated from the 454 platform and 105-kb-span BAC-end

data downloaded from NCBI (http://www.ncbi.nlm.nih.gov/nucgss?term=BOT01)
to extend scaffold length (Supplementary Methods). The B. oleracea genome size
was estimated using the distribution curve of 17-mer frequency (Supplementary
Methods).

To anchor the assembled scaffolds onto pseudo-chromosomes, we developed a
genetic map using a double haploid population with 165 lines derived from a F1
cross between two homozygous lines 02–12 (sequenced) and 0188 (re-sequenced).
The genetic map contains 1,227 simple sequence repeat markers and single
nucleotide polymorphism markers in nine linkage groups, which span a total of
1,180.2 cM with an average of 0.96 cM between the adjacent loci16. To position
these markers to the scaffolds, marker primers were compared with the scaffold
sequences using e-PCR (parameters -n2 -g1 –d 400–800), with the best-scoring
match chosen in case of multiple matches.

We validated the B. oleracea genome assembly by comparing it with the
published physical map constructed using 73,728 BAC clones (http://
lulu.pgml.uga.edu/fpc/WebAGCoL/brassica/WebFPC/)17 and a genetic map from
B. napus18 (Supplementary Methods). Eleven Sanger-sequenced B. oleracea BAC
sequences were used to assess the assembled genome using MUMmer-3.22
(http://mummer.sourceforge.net/) (Supplementary Methods).

Gene prediction and annotation. Gene prediction was performed on the genome
sequence after pre-masking for TEs (Supplementary Methods). Gene prediction
was processed with the following steps: (i) De novo gene prediction used
AUGUSTUS47 and GlimmerHMM48 with parameters trained from A. thaliana
genes. (ii) For homologue prediction, we mapped the protein sequences from
A. thaliana, O. sativa, C. papaya, V. vinifera and P. trichocarpa to the B. oleracea
genome using tblastn with an E-value cutoff of 10� 5, and used GeneWise (Version
2.2.0)49 for gene annotation. (iii) For EST-aided annotation, the Brassica ESTs
from NCBI were aligned to the B. oleracea genome using BLAT (identity Z0.95,
coverage Z0.90) and further assembled using PASA50. Finally, all the predictions
were combined using GLEAN51 to produce the consensus gene sets.

Functional annotation of B. oleracea genes was based on comparison with
SwissProt, TrEMBL, Interproscan and KEGG proteins databases. The tRNA genes
were identified by tRNAscan-SE using default parameters52. Then rRNAs were
compared with the genome using blastn. Other non-coding RNAs, including
miRNA, snRNA, were identified using INFERNAL53 by comparison with the Rfam
database.

TE annotation. LTR-RTs were initially identified using the LTR_STRUC54

programme, and then manually annotated and checked based on structure
characteristics and sequence homology. Refined intact elements were then used to
identify other intact elements and solo LTRs55. All the LTR-RTs with clear
boundaries and insertion sites were classified into superfamilies (Copia-like, Gypsy-
like and Unclassified retroelements) and families relying on the internal protein
sequence, 50 , 30 LTRs, primer-binding site and polypurine tracts. Non-LTR-RTs
(Long interspersed nuclear element, LINE and Short interspersed nuclear element,
SINE) and DNA transposons (Tc1-Mariner, hAT, Mutator, Pong, PIF-Harbinger,
CACTA and miniature inverted repeat TE) were identified using conserved protein
domains of reverse transposase or transposase as queries to search against the
assembled genome using tblastn. Further upstream and downstream sequences of
the candidate matches were compared with each other to define their boundaries
and structure56. Helitron elements were identified by the HelSearch 1.0
programme57 and manually inspected. All the TE categories were identified
according to the criteria described previously58. Typical elements of each category
were selected and mixed together as a database for RepeatMasker59 analysis.
Around 20� coverage of shotgun reads randomly sampled from the two Brassica
genomes were masked by the same TE data set to confirm the different
accumulation of TEs between the two genomes.

Syntenic block construction of B. oleracea and its relatives. We used the same
strategy as described in the B. rapa genome paper11 to construct syntenic blocks
between species (Supplementary Methods). The all-against-all blastp comparison
(E-value r 1e–5) provided the gene pairs for syntenic clustering determined by
MCScan (MATCH_SCORE: 50, MATCH_SIZE: 5, GAP_SCORE: –3, E_VALUE:
1E–05). As applied in B. rapa11, we assigned and partitioned multiple B. oleracea or
B. rapa chromosomal segments that matched the same A. thaliana segment (‘A to
X’ numbering system in A. thaliana22) into three subgenomes: LF, MF1 and MF2.

OrthoMCL clustering. To identify and estimate the number of potential
orthologous gene families between B. oleracea, B. rapa, A. thaliana, C. papaya,
P. trichocarpa, V. vinifera, S. bicolor and O. sativa, and also between B. oleracea and
B. rapa, we applied the OrthoMCL pipeline60 using standard settings (blastp
E value o1� 10� 5 and inflation factor ¼ 1.5) to compute the all-against-all
similarities.

Phylogenetic analysis of gene families. We performed comparative analysis of
trait-related gene families. Genes from grape, papaya and Arabidopsis were
downloaded from the GenoScope database (http://www.genoscope.cns.fr/externe/
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GenomeBrowser/Vitis/), the Hawaii Papaya Genome Project (http://asgpb.mhpc-
c.hawaii.edu/papaya/), and the Arabidopsis Information Resource (http://
www.arabidopsis.org/). Previously reported Arabidopsis and Brassica gene
sequences were downloaded from TAIR (http://www.arabidopsis.org/) and BRAD
(http://brassicadb.org/brad/). The protein sequences of the genes were used to
determine homologues in grape, papaya, Arabidopsis, B. oleracea and B. rapa by
performing blast comparisons with an E-value 1e–10. The Clustal61 programs were
used for multiple sequence alignment. Alignment of the small family of GI genes
was performed using MEGA562 to conduct neighbour-joining analysis with default
parameters and subjected to careful manual checks to remove highly divergent
sequences from further analysis. While for other genes, often found in families of
tens of genes, the phylogenetic analysis were performed by PhyML63, which can
accommodate quite divergent sequences by implementing a maximal likelihood
approach with initial analysis based on neighbour-joining method. During these
analyses, we constructed trees using both CDS and protein sequence, and the
protein-derived tree was used to show the phylogeny if not much incongruity was
found. Bootstrapping was performed using 100 repetitive samplings for each gene
family. All the inferred trees were displayed using MEGA5 (ref. 62). The multiple
sequence alignment of these families was provided as Supplementary Data 3.

Differential expression of duplicated genes across tissues. RNA-seq reads
were mapped to their respective locations on the reference genome using Tophat64.
Uniquely aligned read counts were calculated for each gene for each tissue sample.
We performed the exact conditional test of two Poisson rates on read counts of
duplicated genes to test the differential expression of duplicated genes, according to
the method applied in soybean65,66. For each duplicated gene pair (for example,
genes A and B), read counts and gene length were denoted as Ea and La for gene A,
and Eb and Lb for gene B, respectively. The read counts of the genes A and B were
assumed to follow the Poisson distributions with rates lA¼Ra� La and
lB¼Rb� Lb. Under the null hypothesis of equal expression of the genes A and B,
that is, Ra¼Rb, the conditional distribution of Ea given EaþEb¼ k follows a
binomial distribution with success probability P¼ la/(laþlb)¼ La/(Laþ Lb).
The P values were computed and further adjusted to maintain the false discovery
rate at 0.05 across gene pairs using the Benjamini–Hochberg method67.

Statistical analysis. The average number of all retained orthologues in the three
subgenomes was used to estimate the expected retained gene number in each block,
and used together with the observed retained gene number, for the gene retention
disparity statistics using the w2 test. In the GO, IPR (Interproscan) or KEGG
enrichment analyses of WGT or tandem genes, the w2 test (N45) or the Fisher’s
exact test (Nr5) was used to detect significant differences between the proportion
of (WGT or tandem) genes observed in each child GO, IPR or KEGG categories,
and the expected overall proportion of (WGT or tandem) genes in the whole
genome. Correlation of the gene numbers of WGT-derived paralogous genes with
tandem genes in 938 GO terms was tested by Pearson correlation coefficients
(Supplementary Figure 68). The Benjamini–Hochberg false discovery rate was
performed to adjust the P values67.
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